DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – V , INTERNAL ASSESSMENT-1st , 2019-20 Sub: MATHEMATICS, Course – DSE1

Full Marks: 10

Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- 1. A manufacturer makes red and blue pens. A red pen takes twice as much time as to make a blue pen. If the manufacturer makes only blue pens, 500 can be made in a day. A red pen sells for Rs 8/- and at most 150 can be sold in a day. A blue pen sells for Rs 5/- and at most 250 can be sold in a day. The manufacturer desires to maximize his profit. Formulate the problem as linear programming problem.
- 2. Define convex set with an example.
- 3. Prove that a hyper plane is a convex set.
- 4. Prove that intersection of any number of convex sets is also a convex set.
- 5. Find the extreme points of the convex set determined by the following system of equations

 $2x + 3y \le 6$; $x + y \ge 1$, $x, y \ge 0$.

- 6. Show that the set $X = \{(x, y) : x \le 5, y \ge 3\}$ is a convex set.
- 7. Find the extreme points of the feasible space of the following LPP by graphical method. Maximize $Z = x_1 + 2x_2$
- Subject to $x_1 + x_2 \le 2$; $x_1 x_2 \ge 1$, $x_1, x_2 \ge 0$.
- Find the maximum value of the objective function of the LPP by graphical method Maximize Z = 10x₁ + 15x₂ Subject to x₁ + x₂ ≥ 2; 3x₁ + 2x₂ ≤ 6, x₁, x₂ ≥ 0.

DEPT. OF MATHEMATICS JHARGRAM RAJ COLLEGE B.Sc(H) Sem – V, INTERNAL ASSESSMENT-2nd, 2019-20 Sub: MATHEMATICS, Course – DSE1

Full Marks: 10

Answer any five questions:

Time: 30 m. $(2 \times 5 = 10)$

- 1. What are the characteristics of the standard form of a linear programming problem?
- 2. Define slack variable with an example.
- 3. Define surplus variable with an example.
- 4. Solve graphically the following LPP Maximize: Z = x - 3ySubject to: 5x + y = 30; $4x + 3y \ge 12$; $y \le 5, x, y \ge 0$.
- 5. Solve the following LPP graphically Maximize: $Z = 2x_1 + x_2$ Subject to: $4x_1 + 3x_2 \le 12$; $4x_1 + x_2 \le 8$, $x_1, x_2 \ge 0$.
- 6. What is redundant constraint? Give an example.
- 7. Show that $\{X = (x, y) : |x| \le 2\}$ is a convex set.
- 8. Show that $x_1 = 5$; $x_2 = 0$; $x_3 = -1$ is a basic solution of the system of equations $x_1 + 2x_2 + x_3 = 4 \& 2x_1 + x_2 + 5x_3 = 5$.