DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE

B.Sc(H) Sem - V , INTERNAL ASSESSMENT-1 ${ }^{\text {st }}$, 2019-20

Sub: MATHEMATICS, Course - DSE1

Full Marks: 10
Answer any five questions:

Time: $\mathbf{3 0} \mathrm{m}$.
$(2 \times 5=10)$

1. A manufacturer makes red and blue pens. A red pen takes twice as much time as to make a blue pen. If the manufacturer makes only blue pens, 500 can be made in a day. A red pen sells for Rs $8 /-$ and at most 150 can be sold in a day. A blue pen sells for Rs 5/- and at most 250 can be sold in a day. The manufacturer desires to maximize his profit. Formulate the problem as linear programming problem.
2. Define convex set with an example.
3. Prove that a hyper plane is a convex set.
4. Prove that intersection of any number of convex sets is also a convex set.
5. Find the extreme points of the convex set determined by the following system of equations

$$
2 x+3 y \leq 6 ; x+y \geq 1, x, y \geq 0
$$

6. Show that the set $X=\{(x, y): x \leq 5, y \geq 3\}$ is a convex set.
7. Find the extreme points of the feasible space of the following LPP by graphical method.

Maximize $Z=x_{1}+2 x_{2}$
Subject to $x_{1}+x_{2} \leq 2 ; x_{1}-x_{2} \geq 1, x_{1}, x_{2} \geq 0$.
8. Find the maximum value of the objective function of the LPP by graphical method Maximize $Z=10 x_{1}+15 x_{2}$
Subject to $x_{1}+x_{2} \geq 2 ; 3 x_{1}+2 x_{2} \leq 6, x_{1}, x_{2} \geq 0$.

DEPT. OF MATHEMATICS
 JHARGRAM RAJ COLLEGE
 B.Sc(H) Sem - V , INTERNAL ASSESSMENT-2 ${ }^{\text {nd }}$, 2019-20

Sub: MATHEMATICS, Course - DSE1

Full Marks: 10
Answer any five questions:

Time: $\mathbf{3 0} \mathbf{~ m}$.
$(2 \times 5=10)$

1. What are the characteristics of the standard form of a linear programming problem?
2. Define slack variable with an example.
3. Define surplus variable with an example.
4. Solve graphically the following LPP

Maximize: $Z=x-3 y$
Subject to: $5 x+y=30 ; 4 x+3 y \geq 12 ; y \leq 5, x, y \geq 0$.
5. Solve the following LPP graphically

Maximize: $Z=2 x_{1}+x_{2}$
Subject to: $4 x_{1}+3 x_{2} \leq 12 ; 4 x_{1}+x_{2} \leq 8, x_{1}, x_{2} \geq 0$.
6. What is redundant constraint? Give an example.
7. Show that $\{X=(x, y):|x| \leq 2\}$ is a convex set.
8. Show that $x_{1}=5 ; x_{2}=0 ; x_{3}=-1$ is a basic solution of the system of equations $x_{1}+2 x_{2}+x_{3}=4 \& 2 x_{1}+x_{2}+5 x_{3}=5$.

